Abstract
Objective: to estimate the labor vulnerability of Mexican farmworkers who work in agro-export crops. Methodology: a feasible generalized least squares model and a Poisson model were estimated, considering cumulative disadvantages (i.e., ethnicity, gender, and low schooling) as determinants. Results: it is found that women and men farmworkers with low schooling tend to have greater labor vulnerability; and those who work with formal growers tend to have greater risks of earning low wages; and those who work with informal growers tend to have risks of suffering worse labor conditions. Limitations: vulnerability estimates are made on a single period, which could question the statistical validity if there were autocorrelation, although there are not clues about this. Conclusions: the fact of being a woman and having low schooling operate as a disadvantage in the face of the risks of labor vulnerability in farmworkers in agro-export crops, so estimating vulnerability can be the first step for establishing a public policy aimed to mitigate it.
References
Alwang, J., Siegel, P. B., y Jorgensen, S. L. (2001). Vulnerability: A View from Different Disciplines (Discussion Paper 115). Special Protection-The World Bank. Recuperado de https://documents1.worldbank.org/curated/en/636921468765021121/pdf/multi0page.pdf
Amemiya, T. (1977). The maximum likelihood and the nonlinear three-stage least squares estimator in the general nonlinear simultaneous equation model. Econometrica, 45(4), 955. doi: https://doi.org/10.2307/1912684
Appleton, S., Hoddinott, J., y Krishnan, P. (1999). The gender wage gap in three African countries. Economic Development and Cultural Change, 47(2), 289-312. doi: https://doi.org/10.1086/452402
Bocquier, P., Nordman, C. J., y Vescovo, A. (2010). Employment vulnerability and earnings in urban West Africa. World Development, 38(9), 1297-1314. doi: https://doi.org/10.1016/j.worlddev.2010.02.011
Cameron, A., y Trivedi, P. (1998). Regression Analysis of Count Data (Econometric Society Monographs). Cambridge: Cambridge University Press.
Cameron, A. C., y Trivedi, P. K. (2005). Microeconometrics: Methods and Applications. Cambridge: Cambridge University Press.
Cameron, A. C., y Trivedi, P. K. (2009). Microeconometrics with Stata. College Station, Texas: Stata Press.
Chaudhuri, S., Jalan, J., y Suryahadi, A. (2002). Assessing household vulnerability to poverty from cross-sectional data: a methodology and estimates from Indonesia. Columbia: Columbia University. doi: https://doi.org/10.7916/D85149GF
Consejo Nacional de Evaluación de la Política de Desarrollo Social (CONEVAL). (2010). Metodología de medición multidimensional de la pobreza de México. Recuperado de https://www.coneval.org.mx/Informes/Coordinacion/INFORMES_Y_PUBLICACIONES_PDF/Metodologia_Multidimensional_web.pdf
Corbett, J. (1988). Famine and household coping strategies. World Development, 16(9), 1099-1112. doi: https://doi.org/10.1016/0305-750X(88)90112-X
Fang, Y. P., Zhao, C., Rasul, G., y Wahid, S. M. (2016). Rural household vulnerability and strategies for improvement: an empirical analysis based on time series. Habitat International (53), 254-264. doi: https://doi.org/10.1016/j.habitatint.2015.11.035
Flatø, M., Muttarak, R., y Pelser, A. (2017). Women, weather, and woes: the triangular dynamics of female-headed households, economic vulnerability, and climate variability in South Africa. World Development, 90, 41-62. doi: https://doi.org/10.1016/j.worlddev.2016.08.015
Fuente, A. de la. (2010). Remittances and vulnerability to poverty in rural Mexico. World Development, 38(6), 828-839. doi: https://doi.org/10.1016/j.worlddev.2010.02.002
Devereux, S. (1999). Making less last longer: informal safety nets in Malawi. Discussion paper series, 373. Brighton: Institute of Development Studies. Recuperado de https://opendocs.ids.ac.uk/opendocs/handle/20.500.12413/4982
Escobar, A., Martin, P., y Stabridis, O. (2019). Farm Labor and Mexico’s Export Produce Industry. Washington, D. C.: Wilson Center. Recuperado de https://www.wilsoncenter.org/publication/farm-labor-and-mexicos-export-produce-industry
González de la Rocha, M. (2006). Vanishing assets: cumulative disadvantage among the urban poor. The Annals of the American Academy of Political and Social Science, 606(1), 45-66. doi: https://doi.org/10.1177/0002716206288779
González de la Rocha, M. (2018). Acumulación de desventajas y vulnerabilidad. En M. González de la Rocha y G. A. Saraví (coords.), Pobreza y vulnerabilidad: debates y estudios contemporáneos en México (pp. 26-57). Guadalajara: Colección México, Centro de Investigaciones y Estudios Superiores en Antropología Social.
Greene, W. H. (2003). Econometric Analysis. Upper Saddle River: Pearson Education.
Haughton, J., y Khandker, S. R. (2009). Handbook on Poverty and Inequality. World Bank Publications. Recuperado de http://hdl.handle.net/10986/11985
Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica: Journal of the Econometric Society, 47(1),153-161. doi: https://doi.org/10.2307/1912352
Instituto Nacional de Estadística y Geografía (INEGI). (2012). Atlas agropecuario de México: censo agropecuario 2007. México: INEGI.
Instituto Nacional de Estadística y Geografía (INEGI). (2020). Resultados de la Encuesta Nacional de Ocupación y Empleo, cifras durante el cuarto trimestre de 2019. Comunicado de Prensa N. 70/20. 13 de febrero de 2020. Recuperado de https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2020/enoe_ie/enoe_ie2020_02.pdf
Johnston, J., y Dinardo, J. (1997). Econometric Methods. Londres: McGraw-Hill Companies.
Klasen, S., Lechtenfeld, T., y Povel, F. (2015). A feminization of vulnerability? Female headship, poverty, and vulnerability in Thailand and Vietnam. World Development, 71, 36-53. doi: https://doi.org/10.1016/j.worlddev.2013.11.003
Kuepie, M., Nordman, C. J., y Roubaud, F. (2009). Education and earnings in urban West Africa. Journal of Comparative Economics, 37(3), 491-515. doi: https://doi.org/10.1016/j.jce.2008.09.007
Ligon, E., y Schechter, L. (2003). Measuring vulnerability. The Economic Journal, 113(486), C95-C102. doi: https://doi.org/10.1111/1468-0297.00117
McCulloch, N., y Calandrino, M. (2003). Vulnerability and chronic poverty in rural Sichuan. World Development, 31(3), 611-628. doi: https://doi.org/10.1016/S0305-750X(02)00216-4
Merton, R. K. (1968). The Matthew effect in science. Science, 159(3810), 56-63. Recuperado de http://www.garfield.library.upenn.edu/merton/matthew1.pdf
Moser, C. O. (1998). The asset vulnerability framework: reassessing urban poverty reduction strategies. World Development, 26(1), 1-19. doi: https://doi.org/10.1016/S0305-750X(97)10015-8
NGuyen, L. D., Raabe, K., y Grote, U. (2015). Rural-urban migration, household vulnerability, and welfare in Vietnam. World Development, 71, 79-93. doi: https://doi.org/10.1016/j.worlddev.2013.11.002
Saraví, G. A. (2020). Acumulación de desventajas en América Latina: aportes y desafíos para el estudio de la desigualdad. Revista Latinoamericana de Población, 14(27), 228-256. doi: https://doi.org/10.31406/relap2020.v14.i12.n27.7
Velasco, L., Zlolniski, C., y Coubès, M. (2014). De jornaleros a colonos: residencia, trabajo e identidad en el Valle de San Quintín. Tijuana: El Colegio de la Frontera Norte.
Velasco, L., y Hernández, C. (2018). Migración, trabajo y asentamiento en enclaves globales. Indígenas en Baja California Sur. Tijuana: El Colegio de la Frontera Norte y Comisión Nacional para el Desarrollo de los Pueblos Indígenas.
Visser, M., Gesthuizen, M., Kraaykamp, G., y Wolbers, M. H. (2017). Labor market vulnerability of older workers in the Netherlands and its impact on downward mobility and reduction of working hours. Work, Aging and Retirement, 4(3), 289-299. doi: https://doi.org/10.1093/workar/wax017
Voh, T. T. (2018). Household vulnerability as expected poverty in Vietnam. World Development Perspectives, 10-12, 1-14. doi: https://doi.org/10.1016/j.wdp.2018.04.002
Ward, P. S. (2016). Transient poverty, poverty dynamics, and vulnerability to poverty: an empirical analysis using a balanced panel from rural China. World Development, 78, 541-553. doi: https://doi.org/10.1016/j.worlddev.2015.10.022
Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data. Cambridge: MIT press.
Zereyesus, Y. A., Embaye, W. T., Tsiboe, F., y Amanor-Boadu, V. (2017). Implications of non-farm work to vulnerability to food poverty-recent evidence from Northern Ghana. World Development, 91, 113-124. doi: https://doi.org/10.1016/j.worlddev.2016.10.015

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2022 Omar Stabridis